Neurotransmitters

What Are Neurotransmitters?

The brain has billions and billions of neurons. These cells communicate with each other by releasing chemical messengers, called neurotransmitters, into the synapse, where they are then taken up by specific receptors on neighboring cells. There are many types of neurotransmitters in the brain.

What they have in common is that they are produced inside a neuron, released into the synapse, and then cause effects on receptor cells, helping to propagate or downgrade action potentials.

Neurotransmitters are often put into two types: small-molecule transmitters and neuropeptides – you propably have heard of the latter.

Neuroscientists believed that each type of neuron released only a single, unique neurotransmitter. However, further research showed that neurons synthesize and release more than one type of neurotransmitter.

To date, scientists have identified more than 60 different neurotransmitters in the human brain! They are learning that neurotransmitters like acetylcholine, dopamine, glutamate, serotonin, norepinephrine, GABA, and others play important roles in human cognition and behavior.

And while neurotransmitters are often discussed as having a single role or function, neuroscientists found out that they are multi-faceted, complex, and interact with one another in a variety of different ways.

For example, dopamine has long been thought of as the neurotransmitter involved with reward processing. But new research shows that the release of acetylcholine results in the release of dopamine and both influence reward processing and learning.

Acetylcholine

Acetylcholine (Ach) was the first neurotransmitter to be identified. It is a small-molecule neurotransmitter that works primarily at the neuromuscular junction, translating intention into action between the neuron and the muscle fiber. But it has also been linked to cortical neuroplasticity and attention.

Dopamine

Often referred to as the “pleasure chemical,” dopamine (DA) was first linked to issues with decision-making in patients with Parkinson’s disease.  Since then, it has been one of the most extensively studied neurochemicals—mainly because it plays such diverse roles in human behavior and cognition. DA is involved with motivation, decision-making, movement, reward processing, attention, working memory and learning. It also plays an important role in addiction, schizophrenia, Parkinson’s disease, and other neuropsychiatric disorders.

Glutamate

Glutamate (GLU) is the most excitatory neurotransmitter in the cortex. In fact, too much glutamate results in excitotoxicity—or the death of neurons due to stroke, traumatic brain injury, and Lou Gehrig’s disease. Yet, GLU also plays an important role in learning and memory—long term potentiation (LTP), the molecular process believed to help form memories, occurs in glutamatergic neurons in the hippocampus and cortex.

Serotonin

Serotonin (5HT), sometimes called the “calming chemical,” is best known for its mood modulating effects. A lack of 5HT has been linked to depression and related neuropsychiatric disorders.  But 5HT is farther reaching—and has also been implicated in appetite, sleep, memory, and, most recently, decision making behaviors.

Norepinephrine

Norepinephrine (NE) is both a hormone and a neurotransmitter. It has been linked to mood, arousal, vigilance, memory, and stress. Newer research has focused on its role in both post-traumatic stress disorder (PTSD) and Parkinson’s disease.

gamma-Aminobutyric acid (GABA)

If GLU is the most excitatory neurotransmitter, than its inhibitory correlate is GABA. GABA works to inhibit action potentials. And, in doing so, has been linked to seizure and other pathologies. But this neurotransmitter also plays an important role in brain development. New research suggests that changes in GABA polarity, exciting immature neurons, may help lay down important brain circuits in early development.

Other neurotransmitters

Neurochemicals like oxytocin and vasopressin are also classified as neurotransmitters. These small neurochemicals, made and released from the hypothalamus’ paraventricular nucleus, act directly on neurons and have been linked to pair-bond formation, monogamous behaviors, and drug addiction.  Hormones like estrogen and testosterone can also work as neurotransmitters and influence synaptic activity.

Other neurotransmitter types include corticotropin-releasing factor (CRF), galanin, enkephalin, dynorphin, and neuropeptide Y. CRH, dynorphin, and neuropeptide Y have been implicated in the brain’s response to stress. Galanin, encephalin, and neuropeptide Y are often referred to as “co-transmitters.” Galanin, for example, is released by some cholinergic neurons.

As neuroscientists are learning more about the complexity of neurotransmission, it’s clear that the co-expression of various molecules allows for greater range of flexibility and function.  These different neurotransmitter molecules can also be released both pre-synaptically and post-synaptically to modulate neural activity in different ways.

Glia release neurotransmitters, too

It was also once believed that only neurons released neurotransmitters. New research, however, has now demonstrated, glia, the cells that make up the brain’s “white matter,” also releases neurotransmitters into synapses. Researchers said that glial cells release glutamate into synapses in the hippocampus, helping to synchronize neuronal activity.  Further work has shown that glial cells don’t just release glutamate astrocytes, a type of glial cell, mediate synaptic plasticity by releasing different neurotransmitter and neuromodulator molecules into the synapse as required.  Researchers are working diligently to understand the contributions of these different cell types and the neurotransmitter molecules they release to neural activity.

I hope this gave you a good idea of what Neurotransmitters are and what they do.

As always thanks for reading and see ya in the next one.

P.S. If you liked this post then you’ll like my books as well. You can get them on Amazon.

Share: